Kalamazoo Packaging is currently working with eAgile and Rapid-Line Industries, integrating a Passive Reader System into our equipment for the purpose of verifying shipment loads and inventory control. A description of RFID technology provided by Wikipedia follows below.

Radio-frequency identification (RFID) is the wireless use of electromagnetic fields to transfer data, for the purposes of automatically identifying and tracking tags attached to objects. The tags contain electronically stored information. Some tags are powered by electromagnetic induction from magnetic fields produced near the reader. Some types collect energy from the interrogating radio waves and act as a passive transponder. Other types have a local power source such as a battery and may operate at hundreds of meters from the reader. Unlike a barcode, the tag does not necessarily need to be within line of sight of the reader and may be embedded in the tracked object. RFID is one method for Automatic Identification and Data Capture (AIDC).

Tags

A radio-frequency identification system uses tags, or labels attached to the objects to be identified. Two-way radio transmitter-receivers called interrogators or readers send a signal to the tag and read its response.

RFID tags can be either passive, active or battery-assisted passive. An active tag has an on-board battery and periodically transmits its ID signal. A battery-assisted passive (BAP) has a small battery on board and is activated when in the presence of an RFID reader. A passive tag is cheaper and smaller because it has no battery; instead, the tag uses the radio energy transmitted by the reader. However, to operate a passive tag, it must be illuminated with a power level roughly a thousand times stronger than for signal transmission. That makes a difference in interference and in exposure to radiation.

Tags may either be read-only, having a factory-assigned serial number that is used as a key into a database, or may be read/write, where object-specific data can be written into the tag by the system user. Field programmable tags may be write-once, read-multiple; "blank" tags may be written with an electronic product code by the user.

RFID tags contain at least two parts: an integrated circuit for storing and processing information, modulating and demodulating a radio-frequency (RF) signal, collecting DC power from the incident reader signal, and other specialized functions; and an antenna for receiving and transmitting the signal. The tag information is stored in a non-volatile memory. The RFID tag includes either fixed or programmable logic for processing the transmission and sensor data, respectively.

An RFID reader transmits an encoded radio signal to interrogate the tag. The RFID tag receives the message and then responds with its identification and other information. This may be only a unique tag serial number, or may be product-related information such as a stock number, lot or batch number, production date, or other specific information. Since tags have individual serial numbers, the RFID system design can discriminate among several tags that might be within the range of the RFID reader and read them simultaneously.
Readers

RFID systems can be classified by the type of tag and reader. A **Passive Reader Active Tag (PRAT)** system has a passive reader which only receives radio signals from active tags (battery operated, transmit only). The reception range of a PRAT system reader can be adjusted from 1–2,000 feet (0–600 m), allowing flexibility in applications such as asset protection and supervision.

An **Active Reader Passive Tag (ARPT)** system has an active reader, which transmits interrogator signals and also receives authentication replies from passive tags.

An **Active Reader Active Tag (ARAT)** system uses active tags awoken with an interrogator signal from the active reader. A variation of this system could also use a Battery-Assisted Passive (BAP) tag which acts like a passive tag but has a small battery to power the tag’s return reporting signal.

Fixed readers are set up to create a specific interrogation zone which can be tightly controlled. This allows a highly defined reading area for when tags go in and out of the interrogation zone. Mobile readers may be hand-held or mounted on carts or vehicles.

Signaling

Signaling between the reader and the tag is done in several different incompatible ways, depending on the frequency band used by the tag. Tags operating on LF and HF bands are, in terms of radio wavelength, very close to the reader antenna because they are only a small percentage of a wavelength away. In this near field region, the tag is closely coupled electrically with the transmitter in the reader. The tag can modulate the field produced by the reader by changing the electrical loading the tag represents. By switching between lower and higher relative loads, the tag produces a change that the reader can detect. At UHF and higher frequencies, the tag is more than one radio wavelength away from the reader, requiring a different approach. The tag can backscatter a signal. Active tags may contain functionally separated transmitters and receivers, and the tag need not respond on a frequency related to the reader's interrogation signal.

An **Electronic Product Code (EPC)** is one common type of data stored in a tag. When written into the tag by an RFID printer, the tag contains a 96-bit string of data. The first eight bits are a header which identifies the version of the protocol. The next 28 bits identify the organization that manages the data for this tag; the organization number is assigned by the EPCGlobal consortium. The next 24 bits are an object class, identifying the kind of product; the last 36 bits are a unique serial number for a particular tag. These last two fields are set by the organization that issued the tag. Rather like a URL, the total electronic product code number can be used as a key into a global database to uniquely identify a particular product.

The RFID tag can be affixed to an object and used to track and manage inventory, assets, people, etc. For example, it can be affixed to cars, computer equipment, books, mobile phones, etc.

RFID offers advantages over manual systems or use of bar codes. The tag can be read if passed near a reader, even if it is covered by the object or not visible. The tag can be read inside a case,
carton, box or other container, and unlike barcodes, RFID tags can be read hundreds at a time. Bar codes can only be read one at a time using current devices.

Three factors have driven a significant increase in RFID usage: decreased cost of equipment and tags, increased performance to a reliability of 99.9% and a stable international standard around UHF passive RFID.

Complement to barcode

RFID tags are often a complement, but not a substitute, for UPC or EAN barcodes. They may never completely replace barcodes, due in part to their higher cost and the advantage of multiple data sources on the same object. Also, unlike RFID labels, barcodes can be generated and distributed electronically, e.g. via e-mail or mobile phone, for printing or display by the recipient.

The unique identity is a mandatory requirement for RFID tags, despite special choice of the numbering scheme. RFID tag data capacity is large enough that each individual tag will have a unique code, while current bar codes are limited to a single type code for a particular product. The uniqueness of RFID tags means that a product may be tracked as it moves from location to location, finally ending up in the consumer's hands. This may help to combat theft and other forms of product loss. The tracing of products is an important feature that gets well supported with RFID tags containing a unique identity of the tag and also the serial number of the object. This may help companies cope with quality deficiencies and resulting recall campaigns, but also contributes to concern about tracking and profiling of consumers after the sale.